Biochemical and genetic analyses of acetoin catabolism in Alcaligenes eutrophus
نویسندگان
چکیده
منابع مشابه
Identification and molecular characterization of the Alcaligenes eutrophus H16 aco operon genes involved in acetoin catabolism.
Acetoin:dichlorophenolindophenol oxidoreductase (Ao:DCPIP OR) and the fast-migrating protein (FMP) were purified to homogeneity from crude extracts of acetoin-grown cells of Alcaligenes eutrophus. Ao:DCPIP OR consisted of alpha and beta subunits (Mrs, 35,500 and 36,000, respectively), and a tetrameric alpha 2 beta 2 structure was most likely for the native protein. The molecular weight of FMP s...
متن کاملDissimilation of aromatic compounds by Alcaligenes eutrophus.
The range of aromatic compounds that support the growth of Alcaligenes eutrophus has been determined, and the pathways used for the dissimilation of these substrates have been explored, largely by enzymatic analyses. The beta-ketoadipate pathway operates in the dissimilation of benzoate and p-hydroxybenzoate; the genetisate pathway, in the dissimilation of m-hydroxybenzoate; and the meta cleava...
متن کاملThe membrane-bound hydrogenase of Alcaligenes eutrophus. I. Solubilization, purification, and biochemical properties.
The membrane-bound hydrogenase of Alcaligenes eutrophus was solubilized from washed membranes of autotrophically grown cells. The enzyme consists of two types of subunits and is an iron-sulfur protein. A flavin compound was not detected. The enzyme reacts only with few artificial electron acceptors.
متن کاملDenitrification by Alcaligenes eutrophus is plasmid dependent.
Curing of the hydrogenase-specifying megaplasmid pHG indigenous to strains of the facultative lithoautotrophic bacterium Alcaligenes eutrophus was correlated with a loss of denitrifying ability (Nitd). The retransfer of plasmid pHG1 reconstituted the Nitd phenotype. Plasmid-free mutants were still capable of converting some nitrate to nitrite, but they did not metabolize nitrite under anaerobic...
متن کاملAlcaligenes eutrophus as a bacterial chromate sensor.
In Alcaligenes eutrophus CH34, determinants encoding inducible resistance to chromate (chr) and to cobalt and nickel (cnr) are located adjacent to each other on plasmid pMOL28. To develop metal-sensing bacterial strains, a cloned part of plasmid pMOL28, which contains both determinants, was mutated with Tn5-lacZ. The chr::lacZ fusions were specifically induced by chromium; cnr was induced best ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Bacteriology
سال: 1989
ISSN: 0021-9193,1098-5530
DOI: 10.1128/jb.171.12.6539-6548.1989